New Trends in Parallel and Distributed Simulation:

Many-cores, Cloud Computing and Energy Efficient Simulation

Gabriele D'Angelo

g.dangelo@unibo.it http://www.cs.unibo.it/gdangelo/ Department of Computer Science and Engineering University of Bologna, Italy joint work with M. Marzolla



2016 @ National University of Singapore

Seminar **slides**

These slides can be found at the following URL

http://nus.portazero.it

- Background
- Parallel And Distributed Simulation (PADS)
- New challenges of today and tomorrow
- **Functionality** and **limitations** of current PADS approaches
- In the search of **adaptivity**: the ARTIS/GAIA approach
- Energy efficient simulation

Background

- Parallel And Distributed Simulation (PADS)
- New **challenges** of today and tomorrow
- **Functionality** and **limitations** of current PADS approaches
- In the search of **adaptivity**: the ARTIS/GAIA approach
- Energy efficient simulation

Starting from scratch: **simulation**

- "A computer simulation is a computation that models the behavior of some real or imagined system over time" (R.M. Fujimoto)
- Motivations:
 - performance evaluation
 - study of new solutions
 - creation of virtual worlds such as online games and digital virtual environments

. . .

5

- The state of the simulated system is represented through a set of variables
- The key concept is the "event"
- An event is a change in the system state and it occurs at an instant in time
- All is done through the creation, delivery and computation of events
- The computation of an event can modify some part of the state and lead to the creation of new events

6

DES on a single CPU: sequential simulation

- All simulation tasks are accomplished by a single execution unit (that is a CPU and some RAM)
- PROS: it is a very simple approach
- **CONS**: there are a few **significant limitations**
 - the time required to complete the simulation run
 - how fast is a single CPU?
 - in some cases results have to be in real time or even faster!
 - if the model is quite large and detailed the RAM is not sufficient: it is not possible to model some systems
- This approach does not scale!

Going Parallel: Parallel Discrete Event Simulation

- Multiple interconnected execution units (CPUs or hosts)
- Each unit manages a part of the simulation model
- Very large and complex models can be represented using the resources aggregated from many execution units
- Locally generated events may have to be delivered to remote execution units
- All of this needs to be carefully synchronized
- Concurrent events" can be executed in parallel, this can lead to a significant speedup of the execution

8

- Background
- Parallel And Distributed Simulation (PADS)
- New **challenges** of today and tomorrow
- **Functionality** and **limitations** of current PADS approaches
- In the search of **adaptivity**: the ARTIS/GAIA approach
- Energy efficient simulation

Parallel And Distributed Simulation (PADS)

- There is no global state: this is the key aspect of PADS
- A PADS is the interconnection of a set of model components, usually called Logical Processes (LPs)
- Each LP is responsible to manage the evolution of only a part of the simulation
- Each LP has to interact with other LPs for synchronization and data distribution
- In practice, each LP is usually executed by a processor (or a core in modern multi-core architectures)
- The cost of communication among LP can be very high
- There can be fault-tolerance problems

On the (lack of) **global state** and its **consequences**

- The model has to be **partitioned** in **components** (the LPs)
- In a parallel/distributed architecture synchronization mechanisms have to be implemented
- Data is produced locally (within the LP) but can be of interest to other parts of the simulator (other LPs): data distribution mechanisms
- All these are main problems of PADS: we need to introduce them more in detail

Partitioning: creating and allocating parts

- Each LP is responsible for the management of a part of the simulated model
- In some cases the partitioning follows the structure and the semantics of the simulated system
- In other cases is much harder, for example if the system is monolithic and hard to split in parts
- Many different aspects have to be considered in the partitioning process
- For example:
 - minimization of network communication
 - load balancing of both computation and communication in the execution architecture

Synchronization: on the correct order of events

- Some kind of **network** interconnects the **LP**s running the simulation
- Each LP is executed by a different CPU (or core), possibly at a different speed
- The network can introduce delays but we assume that the communication is reliable (e.g. TCP-based communications)
- The results of a PADS are correct only if its outcome is identical to the one obtained from the corresponding sequential simulation
- Synchronization mechanisms are used to coordinate the LPs: different approaches are possible
- This task usually has a very relevant cost

Data distribution: on the dissemination of information

- Each component of the simulator will produce state updates that are possibly relevant for other components
- The distribution of such updates in the execution architecture is called **data distribution**
- For overhead reasons broadcast can not be used
- The goal is to match data production and consuming based on interest criteria
- Only the necessary data has to be delivered to the interested components
- There are both communication and computation aspects to consider
- Data distribution also has to be properly synchronized

- Background
- Parallel And Distributed Simulation (PADS)
- New **challenges** of today and tomorrow
- **Functionality** and **limitations** of current PADS approaches
- In the search of **adaptivity**: the ARTIS/GAIA approach
- Energy efficient simulation

New challenges: what's next?

- Evolution in computing technology is fast and often confusing
- But it is possible to identify some **characteristics** and **trends**
- Frequent updates in hardware but software is slow in supporting them
- On the other hand, software is limited by hardware characteristics
- For many years, 32 bits processors have limited the max amount of memory of sequential simulators
- Now with 64 bits CPUs memory remains an issue only with huge simulations

New challenges: some existing and new trends

- The so called "MHz race" in CPUs has slowed down
- Multi-core CPUs are now available at bargain prices
- Only few users have access to High Performance
 Computing facilities (*i.e. supercomputers and dedicated clusters*)
- Many are willing to use Commercial Off-The-Shelf (COTS) hardware that is also shared with other tasks (e.g. desktop PCs or underloaded servers)
- Outsourcing the execution of simulations is the next big step in this direction (e.g. simulation as a service)

New challenges: cloud computing

- Cloud computing is a model for providing on-demand network access to a shared pool of computing resources
- Such resources can be provisioned and released quickly and with minimal management effort
- For many reasons cloud computing is becoming mainstream
- Implements the "pay-as-you-go" approach: virtual computing environments in which you pay only for capacity that you actually use
- The resources are obtained from a shared pool and provided by commercial service providers

New challenges vs. existing software tools

- (Most of) available simulators are unable to cope with such changes in the execution environment
- Often they **do not exploit** all the **available resources**
- That means that are **too slow** in obtaining the **results**
- The effect is that users are more and more encouraged to oversimplify the simulation models
- That's a very **risky move**...

New challenges: many cores

Entry level CPUs provide 2 or 4 cores but processors with

>16 cores are available on the market

- **Example:** EZchip TILE-Mx: **100** core ARM Cortex-A53
- This is a big change in the execution architecture and will not be transparent to simulation users
- Sequential simulators are, for the most part, unable to exploit more than one core ("offloading" is not the best solution)
- This means that PADS techniques will be necessary even to run simulations on a desktop PC

New challenges: many cores

- Even if assuming that all cores are homogeneous (and that is not always true), the simulation model has to be partitioned in more and more LPs
- The partitioning is a complex task and increasing the number of cores it becomes harder and harder
- The load of each core has to be balanced and the communication among cores has to be minimized
- Who is in charge of the partitioning has to predict *a priori*:
 - the **behavior** of the **simulated model**
 - the load of the execution architecture

New challenges: many cores

- All static approaches are suboptimal: the runtime conditions are variable
- Who is in charge of **partitioning**?
 - *currently, the software is unsuitable to perform this task*
 - *it is still in charge of the simulator user!*
- It is clear that this approach does not scale!
- Most simulation users are not willing to become experts of
 PADS or computing architectures
- Their goal is to obtain results as fast as possible and with the least effort
- It is clear that it should be a software task!

New challenges: the public cloud

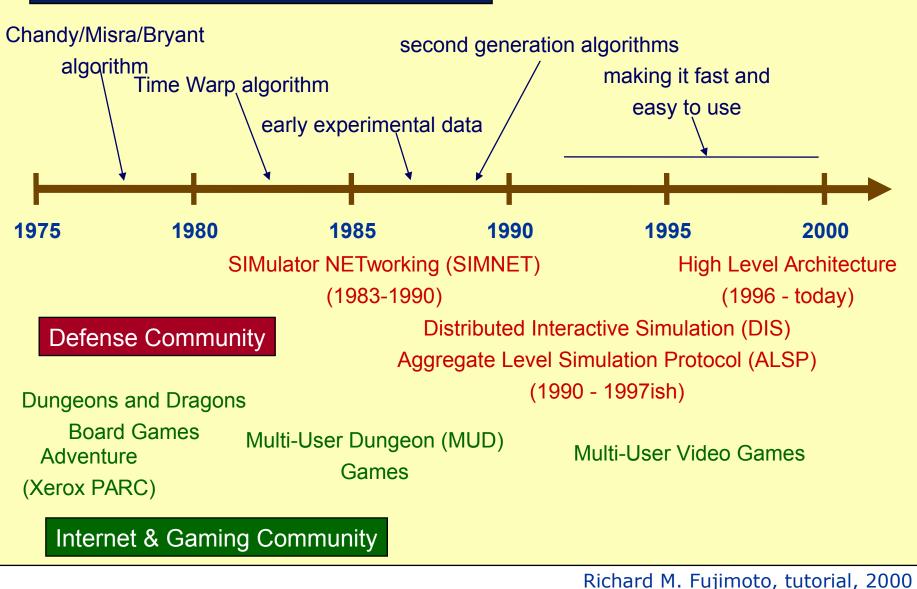
- Everything is going "**on the cloud**". Why simulation is **not**?
- Please do not confuse the private cloud and the public cloud infrastructures, they are very different!
- The big goal is to follow the "everything as a service" paradigm and to rent the resources for running simulations
- On the market there are many providers of cloud services (e.g. Google, Amazon, Microsoft...)
- You pay only for the rented resources and you can increase or decrease them dynamically
- This is great for small or medium size firms: no more investments in hardware!

New challenges: the public cloud

- A public cloud environment can be very dynamic, variable and heterogeneous
- The virtual instances providing the services can be located in different data centers, with different Service Level Agreements and from different providers
- Under the PADS viewpoint, it is again a matter of partitioning
- Are current synchronization protocols (e.g. conservative vs. optimistic) able to deal with a cloud environment?
- Again... the software tools that are available on the market are unable to cope with this problem

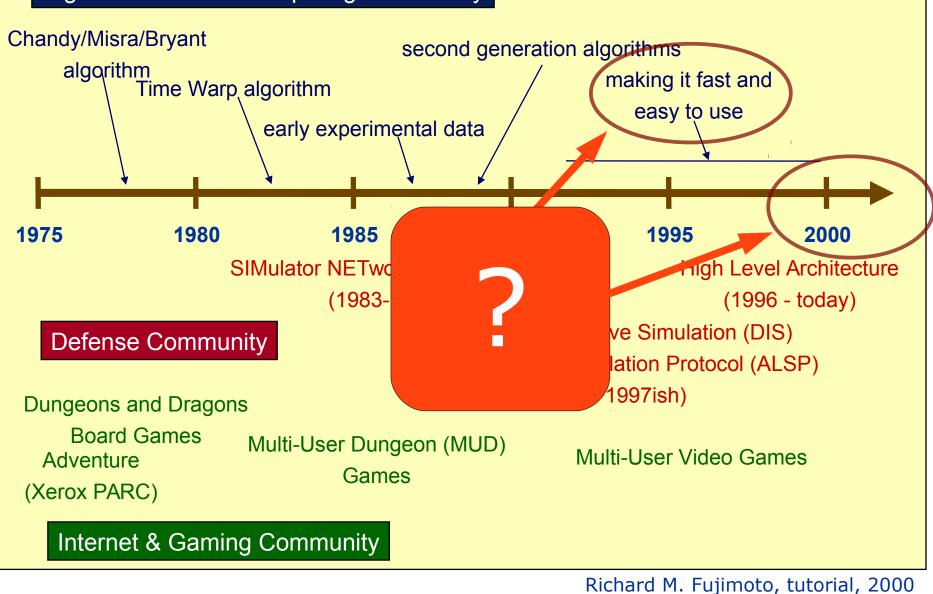
New challenges: the public cloud on steroids

- Let's go on with our vision of "**simulation-as-a-service**"
- The price of cloud computing services is highly dependent on aspects such as reliability and guaranteed performance
- It is a pricing model based on the assumption that all customers have the same requirements
- PADS tools could (automatically) rent very inexpensive (and low reliability) cloud services
- The middleware running the PADS will be in charge of coping with faults
- This can be "easily" done adding some degree of replication
- This is a further extension of the partitioning problem



- Background
- Parallel And Distributed Simulation (PADS)
- New challenges of today and tomorrow
- **Functionality** and **limitations** of current PADS approaches
- In the search of **adaptivity**: the ARTIS/GAIA approach
- Energy efficient simulation

Historical perspective on **PADS**


High Performance Computing Community

27

Historical perspective on **PADS**

High Performance Computing Community

28

PADS: what happened in the last two decades?

- Two main research goals:
 - make it fast
 - make it easy to use
- A lot of work in synchronization and data dissemination management has been done

→ **in some conditions** PADS is very fast

... properly partitioned model, appropriate synchronization algorithm, homogeneous execution architecture ...

What about usability?

PADS does not work straight out of the box

The level of knowledge modelers are required is still too high, some aspects are hard to manage and understand

PADS: cost assessments, the need for new metrics

- The amount of time needed for completing a simulation run is called Wall-Clock-Time (WCT)
- The WCT has always been the main metric to evaluate the efficiency of simulators
- This can be right in classic execution architectures but it is not when the resources are obtained following the "pay for what you use" scheme (e.g. public cloud)
- A more complex evaluation has to be done:
 - *how much time the user can* **wait for the results**?
 - how much he wants to pay for running the simulation?
- Are the current **PADS** algorithms and mechanisms suitable for this new evaluation metric?

PADS: in search of performance

- Let's assume that costs are not a problem and that the goal is to obtain the results as fast as possible
- Continuing to focus on synchronization, the traditional algorithms are fast when run in a public cloud?
- What level of **performance** should we expect?
- The answer is quite simple: using the traditional approaches the obtained results are often (very) poor
- What is the **problem**?

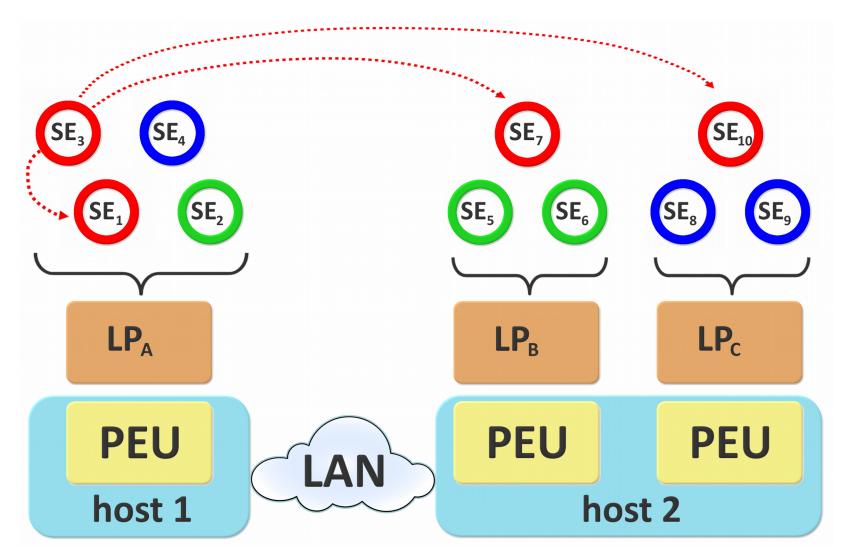
- Background
- Parallel And Distributed Simulation (PADS)
- New challenges of today and tomorrow
- **Functionality** and **limitations** of current PADS approaches
- In the search of **adaptivity**: the ARTIS/GAIA approach
- Energy efficient simulation

How: on the adaptive approaches

- Warning: the "silver bullet" does not exist, even in simulation
- In our vision, all starts with the partitioning problem: decomposing the simulation model into a number of components and properly allocating them among the execution units
- Constraints: the computation load has to be kept balanced while the communication overhead has to be minimized
- Given that the runtime conditions are largely unpredictable and the environment is dynamic and very heterogeneous, all static approaches are not adequate

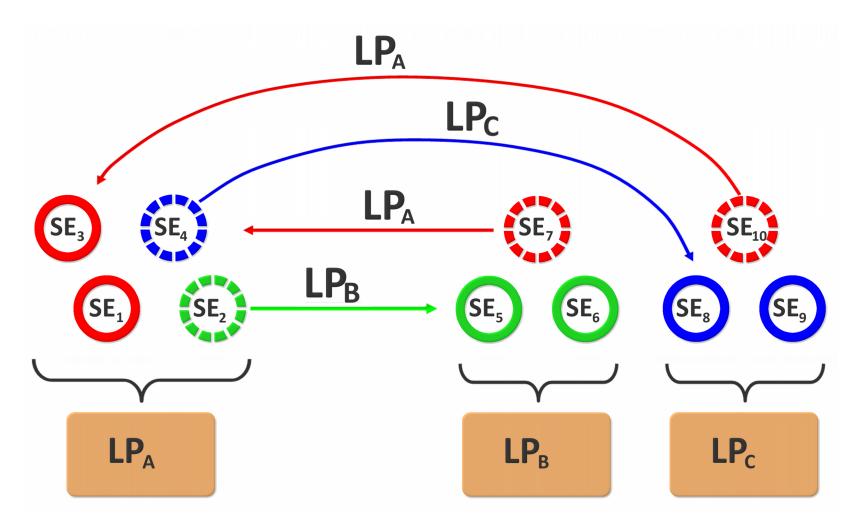
Migration-based adaptive partitioning

- The simulated model is divided into very small parts (called Simulated Entities, SEs)
- Each SE is a tiny piece of the simulated model and interacts with other SEs to implement the model behavior
- It is some sort of **Multi Agent System (MAS**)
- Each node (called Logical Process, LP) in the execution architecture is the container of a dynamic set of SEs
- The SEs are not statically allocated on a specific LP, they can be migrated to:
 - reduce the communication overhead
 - enhance the load balancing



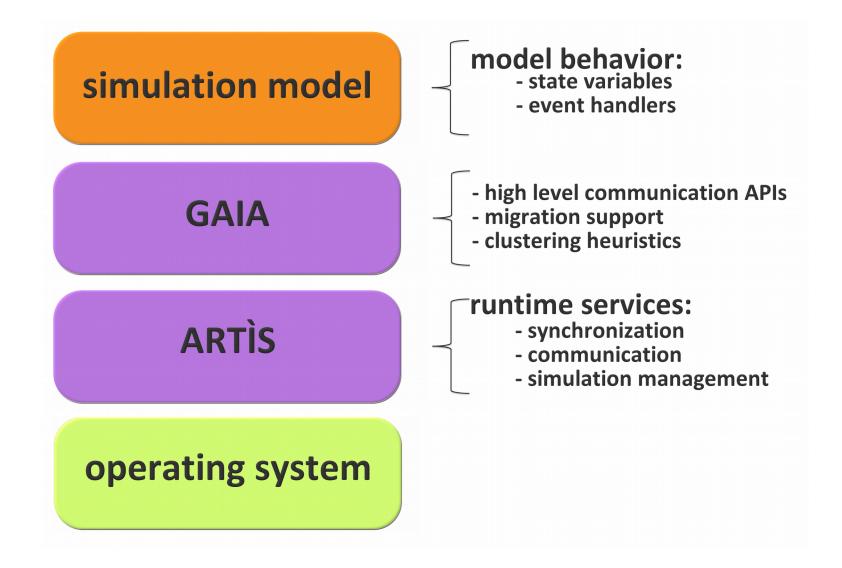
Adaptive clustering: migration of entities

- In a parallel/distributed simulation the communication overhead is usually quite high
- Each SE will have (possibly) different interaction patterns
- In the simulation, it is possible to find "interaction sets" composed of SEs interacting with high frequency
- The main strategy is to cluster the SEs interacting with high frequency within the same LP
- All of this can be done analyzing the communication pattern of each SE and migrating some of them
- The load balancing has to be considered!



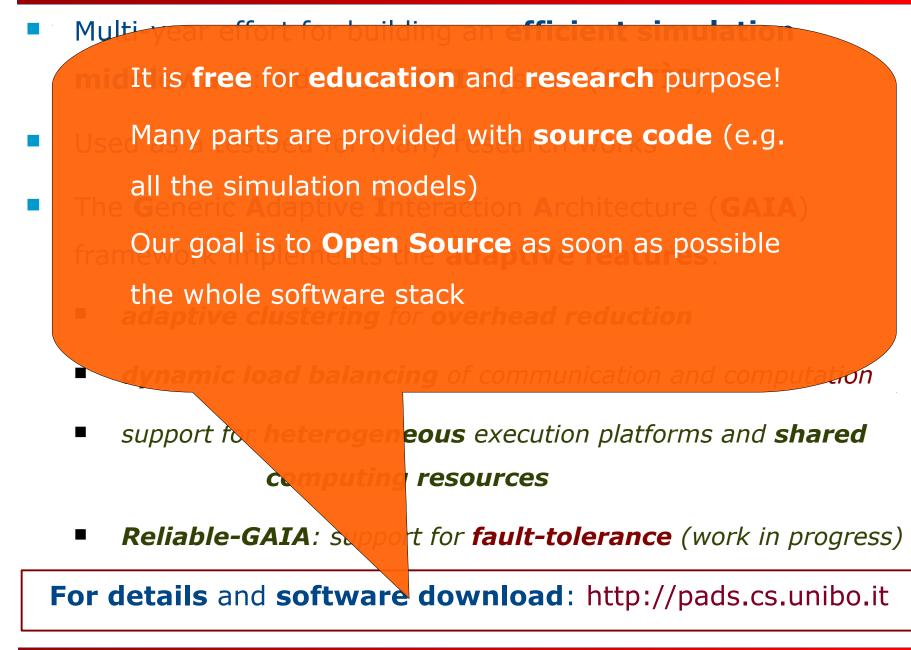
Adaptive clustering: migration of entities

In dashed lines, the **interactions** of SE₃ with other simulated entities


Adaptive clustering: migration of entities

In solid lines, the **migrations** that should be done to enhance the partitioning

The **ARTÌS/GAIA** simulator

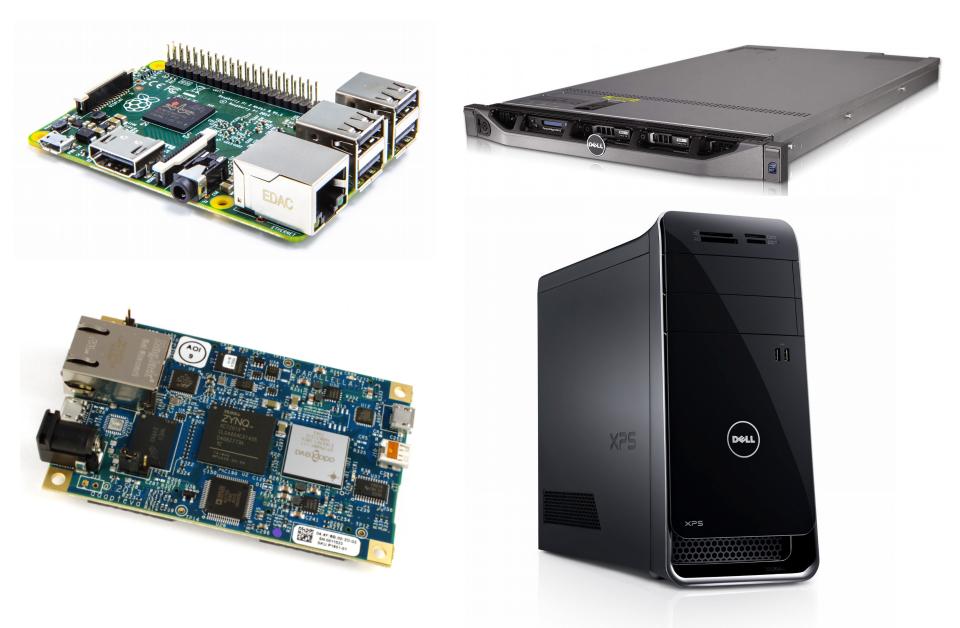


ARTÌS and GAIA, some details

- Multi-year effort for building an efficient simulation middleware: Advanced RTI System (ARTIS)
- Used as a testbed for many research works
- The Generic Adaptive Interaction Architecture (GAIA) framework implements the adaptive features:
 - adaptive clustering for overhead reduction
 - **dynamic load balancing** of communication and computation
 - support for heterogeneous execution platforms and shared computing resources
 - Reliable-GAIA: support for fault-tolerance (work in progress)

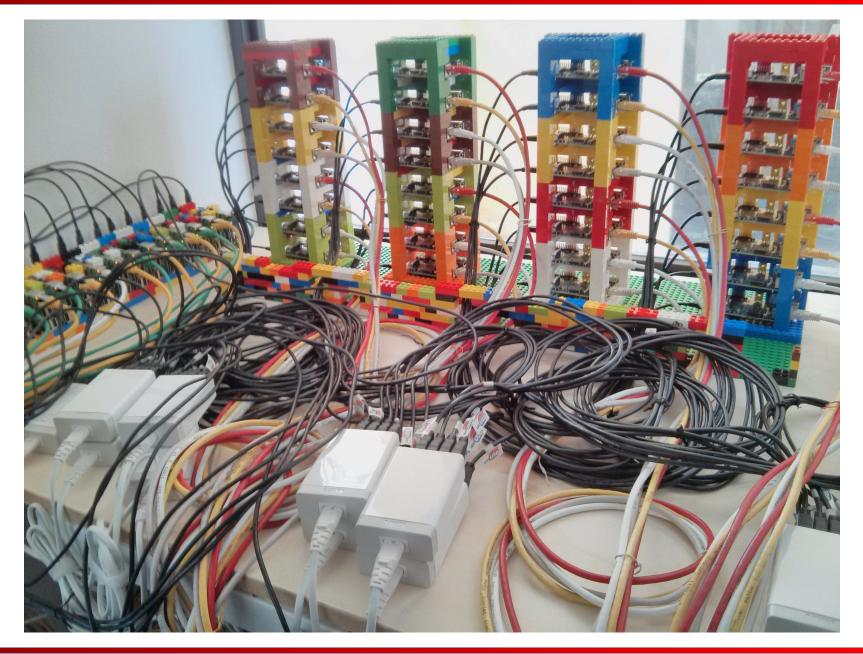
For details and software download: http://pads.cs.unibo.it

ARTÌS and GAIA, some details

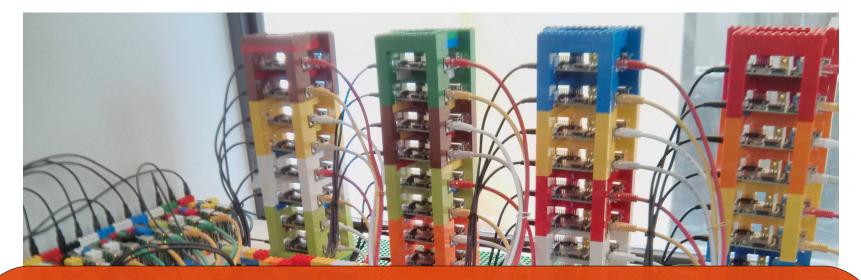


- Background
- Parallel And Distributed Simulation (PADS)
- New challenges of today and tomorrow
- **Functionality** and **limitations** of current PADS approaches
- In the search of **adaptivity**: the ARTIS/GAIA approach
- Energy efficient simulation

Simulation hardware: what is better?



Simulation hardware: what is better?


If the **execution speed** is the metric then the rack server is (very likely) the best choice but what happens if we are **also** interested in **power efficiency**?

Rapèin project: http://raspein.cs.unibo.it

Rapèin project: http://raspein.cs.unibo.it

Evaluating the **power consumption** of the execution architecture is only the first step We need **power-aware algorithms** for synchronization, data distribution and infrastructure management

Further information

Gabriele D'Angelo, Moreno Marzolla

New Trends in Parallel and Distributed Simulation: from Many-cores to Cloud Computing (url)

Simulation Modelling Practice and Theory, Elsevier, vol. 49

Gabriele D'Angelo

The Simulation Model Partitioning Problem: an Adaptive Solution Based on Self-Clustering (url)

Simulation Modelling Practice and Theory, Elsevier, vol. 70

The **ARTIS** middleware and the **GAIA** framework can be downloaded from:

http://pads.cs.unibo.it

Gabriele D'Angelo

- E-mail: <g.dangelo@unibo.it>
- http://www.cs.unibo.it/gdangelo/

46

New Trends in Parallel and Distributed Simulation:

Many-cores, Cloud Computing and Energy Efficient Simulation

Gabriele D'Angelo

g.dangelo@unibo.it http://www.cs.unibo.it/gdangelo/ Department of Computer Science and Engineering University of Bologna, Italy joint work with M. Marzolla

2016 @ National University of Singapore